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To recover the reflectance and shape of an object in a scene, the human visual system must
account for the properties of the light illuminating the object. Here, we examine the extent
to which multiple objects within a scene are utilised to estimate the direction of lighting in
a scene. In Experiment 1, we presented participants with rendered scenes that contained 1,
9, or 25 unfamiliar blob-like objects and measured their capacity to discriminate whether a
directional light source was left or right of the participants’ vantage point. Trends reported
for ensemble perception suggest that the number of utilised objects—and, consequently, dis-
crimination sensitivity—would increase with set size. However, we find little indication that
increasing the number of objects in a scene increased discrimination sensitivity. In Experiment
2, an equivalent noise analysis was used to measure participants’ internal noise and the number
of objects used to judge the average light source direction in a scene, finding that participants
relied on 1 or 2 objects to make their judgement regardless of whether 9 or 25 objects were
present. In Experiment 3, participants completed a shape identification task that required an
implicit judgement of light source direction, rather than an explicit judgement as in Experi-
ment 1 and 2. We find that sensitivity for identifying surface shape was comparable for scenes
containing 1, 9, and 25 objects. Our results suggest that the visual system relied on a small
number of objects to estimate the direction of lighting in our rendered scenes.

Keywords: Illumination perception, equivalent noise, shape identification, ensemble
perception, psychophysics

Introduction

Recovering the intrinsic properties of an object in a scene,
such as surface reflectance and shape, requires accounting
for the prevailing lighting conditions. Although our percep-
tion of illumination has received insufficient psychophysical
examination (Gilchrist, 2006; Schirillo, 2013), there is ev-
idence that the visual system infers the lighting conditions
in a scene. Observers can estimate the properties of a light
source based on an object’s appearance (Kartashova, de Rid-
der, te Pas, & Pont, 2018; Kartashova, Sekulovski, de Rid-
der, te Pas, & Pont, 2016; Koenderink, Pont, van Doorn,
Kappers, & Todd, 2007) and these estimates are evident in
observers’ perception of surface reflectance (Boyaci, Doer-
schner, & Maloney, 2004; Boyaci, Maloney, & Hersh, 2003).
Furthermore, the lighting conditions at different spatial loca-
tions in a scene can be accounted for when judging surface
reflectance (Gilchrist, 1977, 1980; Mizokami, Ikeda, & Shin-
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oda, 1998), with the observers relying on information given
by multiple lighting cues (e.g., specular and non-specular
objects) within a scene to make their judgements (Boyaci,
Doerschner, & Maloney, 2006; Snyder, Doerschner, & Mal-
oney, 2005).

This apparent reliance on multiple objects indicates that
some form of spatial integration may be occurring when
observers are estimating the lighting conditions in a scene,
similar to an ensemble or summary statistic (Haberman &
Whitney, 2012; Pont, 2019; Sanders, Haberman, & Whit-
ney, 2008; Whitney & Yamanashi Leib, 2018). Potential ev-
idence for this suggestion comes from a conference abstract
by Sanders et al. (2008), and described further by Haber-
man and Whitney (2012), who investigated whether the vi-
sual system has an ensemble representation of cast shad-
ows (which is analogous to light source direction). Observers
were presented with images of rendered geometric objects
that were illuminated from a particular direction and were
asked to judge the average orientation of the cast shadows
for a set of objects. The accuracy with which observers com-
pleted the task implied that the estimated shadow orienta-
tion for individual objects within an image were integrated
to estimate the mean shadow orientation. However, similar
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levels of accuracy were reported for the control images in
which the cast shadows were perceived to be surface paint.
As such, observers may have made their judgements without
an explicit representation of light source direction; the aver-
age “shadow” orientation could have been computed without
actually integrating multiple local estimates of shadow orien-
tation. Therefore, the results from Sanders et al. (2008) are
inconclusive in regards to the visual system utilising multiple
objects within a scene to estimate lighting direction.

Here, we focus on examining the extent to which esti-
mates of the direction of lighting in a scene are informed by
multiple objects within that scene. If estimates of lighting di-
rection are informed by multiple objects, we would expect to
see a positive relationship between the number of objects in
a scene and the number of objects that are relied upon to esti-
mate lighting direction. This assumption is based on a trend
reported for ensemble perception in which the number of in-
tegrated samples (i.e., the number of stimulus elements used
to make a judgement about the stimulus) tends to increase as
the number of stimulus elements increases (Whitney & Ya-
manashi Leib, 2018). If the visual system does combine mul-
tiple local samples to estimate lighting conditions in a scene,
an observer should use more objects to judge light source di-
rection in Figure 1E compared to Figure 1C and Figure 1A,
for example. As each local estimate will have some degree of
noise associated with it, relying on multiple local estimates
will result in greater precision compared to relying on a sin-
gle local estimate. As a consequence, precision at estimating
the direction of a light source should improve as more objects
are added to a scene. Such an effect of set size has been found
for ensemble perception; for example, Robitaille and Harris
(2011) reported that larger set sizes were associated with im-
proved accuracy when observers judged the mean size and
orientation of a set of circles and tilted bars, respectively.

In three experiments, we measured participants’ ability to
estimate the direction of lighting in scenes that contained a
varying number of objects. In Experiment 1, participants
were presented with scenes containing 1, 9, or 25 objects
and indicated whether they perceived the scene as illumi-
nated from the left or right, relative to their viewpoint. To
further understand our results in Experiment 1, we used an
equivalent noise paradigm in Experiment 2 to measure the
number of objects used to estimate the average light source
direction in a scene. To probe any potential differences be-
tween implicit and explicit judgements of lighting direction,
participants completed a shape identification task in Experi-
ment 3 that required an implicit judgement of lighting direc-
tion (rather than explicit, as in Experiments 1 and 2).

Experiment 1

The aim of Experiment 1 was to examine the extent to
which light source direction discrimination depends on the
number of visible objects within a scene. Participants were

presented with images of scenes that contained 1, 9, or 25
objects and asked to indicate whether the scenes were illu-
minated from the left or right, relative to their viewpoint.
We also manipulated whether the scenes were rendered with
or without cast shadows to examine the contribution of cast
shadow information to any changes in discrimination sensi-
tivity associated with variations in set size. If the visual sys-
tem does use multiple samples to estimate the direction of
lighting in a scene, performance on the light source direction
discrimination task should benefit from an increasing number
of objects in a scene.

Methods

Participants. Thirty-two participants (18 female and
14 male; median age of 19 years) with self-reported nor-
mal or corrected-to-normal vision completed the experiment.
The majority of participants (27/32) were 21-years-old or
younger. Participants were recruited from a database of
undergraduate students enrolled in a first-year psychology
course at UNSW Sydney. Participants gave informed and
written consent prior to beginning the experiment and exper-
imental procedures were approved by the Human Research
Ethics Advisory Panel at the School of Psychology, UNSW
Sydney. All participants were naïve to the purpose of the
experiment.

Apparatus. The experiment was run in three similar
testing booths. In each booth, the experiment was presented
on a Display++ LCD monitor (Cambridge Research Sys-
tems, Kent, UK). Each monitor had a spatial resolution of
1920×1080 pixels, temporal resolution of 120Hz, mean lu-
minance of 60 cd/m2, a linear relationship between graphics
card signal and luminance, and a 10-bits per pixel luminance
output resolution. Participants viewed the monitor, in an
otherwise darkened booth, from a distance of approximately
60cm for a total visual angular subtense of approximately
66◦×37◦. The stimuli for the experiment were created with
POV-Ray (Version 3.7; https://www.povray.org/). The
experiment was implemented using PsychoPy (Peirce, 2007,
2008), and analyses was performed using NumPy (Harris et
al., 2020), SciPy (Virtanen et al., 2020), and PyMC (Sal-
vatier, Wiecki, & Fonnesbeck, 2016).

Stimuli. The stimuli were rendered images of scenes
containing 1, 9, or 25 objects (see Figure 1 for examples).
The geometry of the objects was created by applying a
“bumpy” texture (f_bumps from POV-Ray’s library) to the
surface of a sphere. This created blob-like objects with ran-
dom surface curvature. The size of the objects was selected
so that the objects did not occlude one another. The objects
were situated on a flat checkerboard surface (with checks
of 15% and 25% reflectance), illuminated by a single direc-
tional light source.

We rendered 100 instances of each combination of set
size, cast shadows, and light source azimuth. The scene was
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Figure 1. Examples of the stimuli from Experiment 1. Participants were presented with images of scenes containing 1, 9,
or 25 objects and the objects were rendered either with (A, C, E) or without (B, D, F) cast shadows. The light source azimuth
is −45.25◦ in each panel. The white labels in A show the dimensions of the stimulus in degrees of visual angle. See Figure 6B
for examples of an individual object illuminated from different azimuths.

captured with an orthographic camera that had an elevation
of 23.2◦ and was pointed towards centre of the scene. The
scale and amplitude of the bump surface texture were ran-
domised for each object in a scene. All of the objects had
a diffuse (Lambertian) reflectance that was randomly chosen
from a Beta distribution (α = 1.5, β = 6.5), limited to the
range 5% reflectance and 80% reflectance, to mimic the dis-
tribution of reflectances that is found in natural scenes (At-
tewell & Baddeley, 2007). The elevation of the light source
was fixed at 40◦ and the azimuth varied across renderings.
For the no-cast-shadows condition, the light source was arti-
ficially prevented from casting shadows.

We chose to present scenes that contained 1, 9, and 25
objects as these set sizes allowed us to adjust the number of
objects on the checkerboard surface while maintaining a reg-
ular spatial arrangement. The location of the objects in the
scene was specified by a 5×5 grid. An object was placed in
the centre of the grid for all set size conditions. Additional
objects were added to the grid in the inner and outer ring
surrounding the central object for the 9-object and 25-object
condition, respectively. A small amount of jitter was added
to the position of each object on the checkerboard surface,
which meant that each object did not appear in the same ex-
act location throughout the experiment.

Design and procedure. The experiment had a within-
subjects design with factors of cast shadows (scenes rendered
with or without cast shadows) and set size (1, 9, or 25 items).
Participants completed the experiment in a single 45-minute
session. Prior to beginning the experiment, participants were
introduced to the task via a set of instructions that included
a written explanation of the experiment and a short practice
task. The practice task consisted of twelve trials (scenes with
the light source azimuth as −35.25◦ and +35.25◦ for each
condition) in which we expected participants to respond cor-
rectly unless they misunderstood the task. Participants were
required to respond correctly on all of these trials before be-
ginning the experiment.

The experiment consisted of 10 runs with 66 trials each,
with a short rest break between each run. On each trial,
the stimulus was presented for 600ms at full visibility, with
100ms ramp in and out from the black background, followed
by the response prompt: “Was the scene lit from the left or
right? Press the ‘left’ arrow key for left or the ‘right’ arrow
key for right”. Participants received feedback on the correct-
ness of their response in the form of a tick or cross appearing
briefly on the screen before the subsequent trial began.

The experiment had 660 trials in total. Each condition
had 100 trials that were randomly interleaved throughout the
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experiment. For each condition, there were additional 10
‘catch’ trials in which the illumination angle was randomly
chosen to be either −70.25◦ or +70.25◦. The angle of illumi-
nation on each trial was selected using a Psi-marginal adap-
tive staircase procedure (Kontsevich & Tyler, 1999; Prins,
2013), with separate staircases for each condition. Partic-
ipants’ responses were modelled using a cumulative Nor-
mal function, which describes the probability of a participant
judging a scene as lit from the right for a given illumina-
tion angle. Possible stimulus levels ranged from −70.25◦

to +70.25◦ in steps of 0.5◦, with 0◦ being the observer’s
vantage point. The Psi procedure targeted the spread (in-
verse slope) of the psychometric function and marginalised
over the function’s midpoint to optimise the estimation of
the spread, which was central to assessing the effect of our
manipulations on discrimination sensitivity.

Data analysis. Participants were excluded from the
analysis based on their catch trial performance. Four partici-
pants were excluded from the analysis because their accuracy
on the catch trials was less than 90%. The analysis described
below was carried out with the remaining 28 participants.

We used Bayesian statistical modelling to analyse the ex-
perimental data, with a focus on parameter estimation rather
than hypothesis testing or model comparison (see Calin-
Jageman & Cumming, 2019, for an overview of this ap-
proach), and our general approach to building the statisti-
cal models was motivated by Lee (2018), Wagenmakers et
al. (2018), and Betancourt (2020). Participant performance
in each experimental condition was modelled using a psy-
chometric function, the parameters of which were estimated
with a Bayesian generalised linear mixed model approach.
The key parameter of interest was the spread of the psycho-
metric function. The model for the psychometric function
spread included fixed effects for the intercept, the main ef-
fect of cast shadows, the linear and quadratic main effects
of set size rank, and the interaction between cast shadows
and the set size rank effects. The quadratic main effect of
set size rank was included in the model to allow for a non-
monotonic effect of set size rank on the spread. We also in-
cluded participant random effects in the model such that the
fixed effects could vary across participants. The model for
the midpoint of the psychometric function followed the same
structure. A complete description of the statistical model can
be found in Appendix A. Consistent with the Bayesian statis-
tical modelling approach, we incorporated prior probabilities
into the models which reflected what we expected to be the
reasonable magnitude of the effect of our experimental ma-
nipulations (see Appendix A for an explanation of the spe-
cific priors placed on the model parameters). Figure 2 shows
a summary of the observed data and the fitted psychometric
function for a single experimental condition from a represen-
tative participant.

Figure 2. Example data and fitted psychometric function
from a single condition (set size of 9 objects and with shad-
ows present) for a representative participant in Experiment 1.
The green circles show the mean proportion of rightwards
judgements for trials where the illumination angle was within
a given bin, with the size of the circles proportional to the
number of trials in each bin. The solid line and grey region
show the median and 95% credible interval of the psycho-
metric function derived from the fitted parameters for this
participant for this experimental condition.

Results

In this experiment, participants were shown an image of
a scene and indicated whether they perceived the scene as
lit from the left or right. We used a Bayesian linear mixed
model approach to estimate the parameters of each observer’s
psychometric function for each experimental condition. We
compared the aggregated observed data and the posterior
retrodictive samples from the fitted model and found that the
model reproduced the patterns in the observed data with no
major discrepancies (see Figure A1 in Appendix A).

Our primary parameter of interest is the spread (inverse
slope) of the psychometric function, where lower values are
associated with steeper slopes and greater sensitivity and
higher values are associated with shallower slopes and less
sensitivity. Figure 3 summarises the estimated posterior dis-
tributions for the spread parameter for each of the six ex-
perimental conditions (whether cast shadows are present or
absent for scenes with 1, 9, or 25 visible objects). If the pres-
ence of multiple objects increased the sensitivity with which
an observer could discriminate the direction from which the
scene was illuminated, we would expect the spread param-
eter to decrease with increasing numbers of visible objects.
However, it is evident in Figure 3 that the estimated spread
actually increased, if anything, with increasing numbers of
visible objects. The parameter capturing the linear com-
ponent of the trend indicated that the spread increased by
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Figure 3. Summaries of the estimated posterior distributions
for the spread parameter of the psychometric function for
each experimental condition. The horizontal axis is the num-
ber of objects present in a scene (non-linearly spaced). The
vertical axes show the spread of the psychometric function in
log (left axis) and linear (right axis) units. Each posterior is
shown as a ‘ribbon’ in which the central white bar represents
the median of the posterior distribution and the surrounding
bars represent credible intervals as shown in the legend.

a factor of about 1.07 (posterior median; 95% credible in-
terval: [1.00,1.14]) with each increment in set size condi-
tion (i.e., from 1 to 9 and from 9 to 25 visible objects)
when cast shadows were present, with a greater increase of
a factor of about 1.17 (posterior median; 95% credible in-
terval: [1.09,1.25]) when cast shadows were absent. The
quadratic trend components were less influential, although
Figure 3 suggests that there may have been a saturation in
the increase in spread with the set size condition when cast
shadows were absent.

Presenting participants with scenes rendered without cast
shadows worsened the sensitivity for illumination direction
discrimination. The average spread across the set size condi-
tions increased by a factor of about 3.36 (posterior median;
95% credible interval: [2.86,3.94]) when cast shadows were
absent compared to when they were present.

Discussion

In this experiment, we aimed to measure light source di-
rection discrimination for scenes that contained 1, 9, and 25
objects. We found that there was a small decrease in sensitiv-
ity as more objects were added to a scene and this decrease
in sensitivity across set sizes was greater for scenes rendered
without cast shadows. We also found that discrimination sen-
sitivity decreased for scenes rendered without cast shadows,
which is perhaps unsurprising given that previous research
has identified cast shadows as an important cue for estimat-

ing light source properties (Boyaci et al., 2006; te Pas, Pont,
Dalmaijer, & Hooge, 2017).

The potential decrease in discrimination sensitivity with
set size could be due to a dependency of internal noise on
set size—an effect that has been reported previously for en-
semble coding. Dakin (2001) examined how varying the ori-
entation of a group of textures affected judgements of the
mean orientation of the textures, finding that increasing the
number of texture elements in the stimulus led to an increase
in internal noise. Dakin, Mareschal, and Bex (2005a) also
reported an increase in internal noise with more stimulus el-
ements when participants were asked to estimate the average
motion direction of a group of dots.

It is possible that a similar relationship between set size
and internal noise existed in the current experiment, con-
founding our interpretation of discrimination sensitivity as
an indicator of participants relying on multiple objects to
judge the direction of the light source. We have assumed
that internal noise remains constant across set sizes and,
therefore, precision should increase with more objects in a
scene (as depicted by the diamond markers in Figure 4).
However, increases in internal noise with set size could out-
weigh any benefit associated with integrating multiple local
estimates (as depicted by the circle and square markers in
Figure 4). In the current experiment, it is possible that par-
ticipants were using multiple objects to judge light source
direction but this was masked by increases in internal noise.
That is, the decrease in discrimination sensitivity associated
with increases in set size suggests that there may be a trade-
off between precision and the reliance on multiple estimates,
where any benefit associated with using multiple local esti-
mates is outweighed by decreases in precision. The basis of
the subsequent experiment is an equivalent noise paradigm,
in which internal noise and the number of integrated objects
can be estimated by presenting stimuli with varying levels
of external noise (Barlow, 1956; Dakin, 2001; Dakin et al.,
2005a; Pelli, 1990).

Experiment 2

In this experiment, we use an equivalent noise paradigm to
measure the number of objects used to judge the average light
source direction in a scene as well as participants’ internal
noise. Within this paradigm, the spread of each participant’s
psychometric function is defined as:

σ =

√
σ2

int +σ2
ext

N
. (1)

In Equation 1, σint is the internal noise, σext is the exter-
nal noise, and N is the number of integrated objects. In an
equivalent noise task, the presentation of stimuli with vary-
ing levels of external noise allows for estimation of internal
noise and the number of integrated samples (Barlow, 1956;
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Figure 4. The possible effects of variations in internal noise
on psychometric function spread, assuming integration of ap-
proximately the square root of the number of objects in a
scene. If we assume that an observer has an internal noise
of 10◦ which remains constant across changes in set size,
the spread should decrease with more objects in a scene.
However, internal noise may vary with the number of objects
in a scene. Internal noise may increase proportionally with
set size and negate any benefit associated with integration,
leading to no meaningful change in the spread across the set
sizes (as depicted by the circle markers). Alternatively, inter-
nal noise could increase such that it overwhelms the benefits
from integrating multiple objects, resulting in increases in
the spread with more objects in a scene (as depicted by the
square markers).

Dakin, 2001; Dakin et al., 2005a; Pelli, 1990). Performance
at low levels of external noise is determined by both internal
noise and integration, and performance becomes increasingly
determined by the number of integrated samples as external
noise increases (Dakin, 2001), as depicted in Figure 5.

Participants were presented with images of scenes that
contained 9 and 25 objects and asked to the judge the av-
erage light source direction in a scene as leftwards or right-
wards. We chose these set sizes to allow for comparisons
to the results from Experiment 1, though the 1-object con-
dition that was present in Experiment 1 was excluded from
the current experiment due to constraints on the number of
trials as well as its relative lack of informativeness within
the equivalent noise paradigm. The light source azimuth for
each object in a scene was drawn from a wrapped Normal
distribution (Dakin et al., 2005a) with a particular standard
deviation—this allowed us to add external noise to the stim-
uli. A given object in a scene could be illuminated by a light
source with an azimuth from the −180◦ to +180◦ range (ex-
amples of an object illuminated from different azimuths are

σ = σ int
2 +σ ext

2

N√
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Figure 5. Examples of the relationship between external
noise (σext) and the spread of the psychometric function (σ )
for different configurations of internal noise (σint) and the
number of integrated samples (N). The line styles (dot-
ted, solid, dashed) are associated with variations in inter-
nal noise and the line colours/brightnesses (purple/darker,
blue/intermediate, green/lighter) are associated with varia-
tions in the number of integrated samples, with a given pa-
rameter configuration being the conjunction of these ele-
ments.

shown in Figure 6B). For example, in Figure 6A, the light
source azimuth for each object in the scene was drawn from
a Normal distribution with a mean of +50◦ and a standard
deviation of 64◦.

Methods

Participants. Thirty-eight participants (25 female and
13 male, median age of 19 years) with self-reported normal
or corrected-to-normal vision participated in the experiment.
The majority of participants (35/38) were 21-years-old or
younger. The recruitment procedure was as described for the
previous experiment.

Apparatus. The setup and implementation for this ex-
periment was identical to what was reported for Experi-
ment 1.

Stimuli. To allow for the addition of external noise to
the stimuli, we first created a database of images of scenes
with 25 objects, with each scene illuminated by a light source
with an azimuth ranging from −180◦ to +180◦ in half-degree
increments (total of 1,440 angles). The elevation of the light
source was fixed at 40◦ for all scenes. The geometry, re-
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Figure 6. In Experiment 2, the light source azimuth was varied across objects to add external noise to the stimuli. An example
of a scene with external noise is shown in A; azimuths for each object were drawn from a Normal distribution with a mean
of +50◦ and standard deviation of 64◦. In B, the object in each image has the same reflectance, surface curvature, and position
in the scene. The white text label in each image indicates the azimuth of the light source illuminating the object. An azimuth
of 0◦ corresponds to the camera’s vantage point (i.e., frontal illumination) with negative and positive azimuths corresponding
to leftwards and rightwards light source direction, respectively.
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flectance, and placement of the objects in a scene were as
described for Experiment 1. We rendered 100 instances of
the images for each light source azimuth, varying object re-
flectance, geometry, and position jitter, which created a total
of 144,000 images.

In the scenes shown to participants, the light source az-
imuth for each object was drawn from a Normal distribution
where µ was the mean light source azimuth (hereafter re-
ferred to as the “mean illumination angle”) in the scene and σ

was the external noise level. To create these scenes, an image
was selected from the database for each object based on an
azimuth drawn from this distribution and a randomly chosen
instance. A mask was applied to the selected image which
removed all parts of the image apart from an oval-shaped
aperture surrounding the object that was being added to the
scene. This process was repeated for each object in a scene.
For the 9-object condition (Figure 7A and B), an “empty”
image containing only the checkerboard surface, instead of
an image from the database, was used for the outer object
locations. We then combined the 25 masked images to create
the scenes presented to participants; see Figure 7 for exam-
ples.

Design and procedure. The experiment had a single
factor design with set size (scenes containing 9 or 25 objects)
manipulated within-subjects. Participants completed the ex-
periment in a 45-minute session. The experiment began with
a set of written instructions followed by a short practice task.
The practice task consisted of twelve “easy” trials: mean
illumination angle of −90◦ and +90◦, and external noise
of 0◦, 30◦, and 48◦ for each set size condition. Participants
were required to make a correct response on all practice tri-
als before beginning the experiment as an incorrect response
would have indicated that the participant misunderstood the
task.

The experiment had 10 runs with 66 trials per run and a
30-second rest break between each run. On each trial, the
stimulus was presented for a total of 800ms; 600ms at full
opacity plus a 100ms fade in and out from a black back-
ground. The stimulus presentation was followed by the re-
sponse prompt: “On average, was the scene illuminated from
the left or right? Press the ‘left’ arrow key for left or ‘right’
arrow key for right”. Participants received feedback on the
correctness of their response in the form of a tick or cross
appearing briefly on the screen before the next trial began.

The experiment had a total of 660 trials with 330 tri-
als for each set size condition, including 30 ‘catch’ tri-
als, which were randomly interleaved throughout the ex-
periment. The mean illumination angle for the catch tri-
als was either −90◦ or +90◦, with no external noise. The
mean illumination angle and external noise level for each
trial were chosen by a Psi-marginal adaptive staircase pro-
cedure (Kontsevich & Tyler, 1999; Prins, 2013), with sep-
arate staircases for each set size condition. Possible mean

illumination angles ranged from −90◦ to +90◦ (with 0◦ as
the observer’s vantage point) and possible external noise lev-
els were 0◦, 30◦, 48◦, 64◦, 80◦, 96◦, 112◦, and 128◦. The
inclusion of very high levels of external noise allowed us to
estimate the separate contributions of internal noise and the
number of integrated objects to participants’ performance, as
these parameters are confounded at low external noise lev-
els (Dakin, Mareschal, & Bex, 2005b). We adjusted the Psi
procedure to prevent the presentation of scenes with the same
mean illumination direction for an extended number of tri-
als. On a given trial, the mean illumination angle and exter-
nal noise level were selected from within a range of stimulus
values which were determined to be similarly informative of
the psychometric function parameters. Furthermore, the sign
of the selected angle was flipped if the five preceding trials
all had mean illumination angles with the same sign.

Participant responses were modelled using a wrapped cu-
mulative Normal function (Dakin et al., 2005a) which de-
scribes the probability of judging the mean illumination di-
rection in a scene as rightwards for a given mean illumination
angle. The spread of the psychometric function was given by
Equation 1. As we were most interested in the σint and N pa-
rameters, we used the Psi-marginal procedure to optimise the
estimation of σint and N and marginalise over the midpoint
of the psychometric function.

Data analysis. Five participants were excluded from the
analysis because their catch trial accuracy was below 90%.
An additional two participants were excluded from the anal-
ysis due to unreasonably high estimates of internal noise (>
25◦). The analysis described here was conducted with the
remaining 31 participants.

We used a similar statistical approach to that taken for Ex-
periment 1. The amount of internal noise, the number of
integrated objects (parameterised as the exponent of the set
size), and the midpoint of the psychometric function were
each expressed using generalised linear mixed models (see
Appendix B for a detailed description). Figure 8 shows a
summary of the observed data and the fitted psychometric
function for a single experimental condition from a repre-
sentative participant.

Results

In this experiment, participants were shown images of
scenes in which individual objects could be illuminated
from different directions. Participants were asked to judge
whether the mean direction of illumination in each scene was
leftwards or rightwards, relative to their viewpoint. We used
an equivalent noise model to estimate the internal noise and
the number of integrated objects that were consistent with the
performance on the task. To check how well the model ap-
proximated the data, we compared the aggregated observed
data and the posterior retrodictive samples and found that the
model reproduced the patterns in the observed data with no
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Figure 7. Examples of the stimuli from Experiment 2. The stimuli were images of scenes containing 9 or 25 objects. The white
labels in A give the dimensions of the stimuli in degrees of visual angle. The average illumination angle is −50◦ in A and B,
and +50◦ in C and D. External noise was added to the stimuli by varying the illumination angle for individual objects; A
and C have 0◦ of external noise, and B and D have 64◦ of external noise.

major discrepancies (see Figures B1 and B2 in Appendix B).
Figure 9A depicts the joint posterior for the estimated

mean number of integrated objects for scenes with set sizes
of 9 and 25 objects. As shown in the figure, the number
of integrated objects was likely to be low: below about 1.5
when there were 9 visible objects and of comparable num-
ber (or lower, if anything) when there were 25 visible objects.
Figure 9B depicts the joint posterior for the estimated mean
amount of internal noise for scenes with set sizes of 9 and 25
objects; it shows that the mean amount of internal noise was
around 5◦ for both set sizes.

Discussion

In the current experiment, participants were presented
with images of scenes that contained 9 and 25 objects and
indicated whether they perceived the average light source di-
rection in the scene as leftwards or rightwards. Using an
equivalent noise paradigm, we estimated each participant’s
internal noise as well as the number of objects used to judge
the average light source direction in a scene. We report that
there was no systematic variation in internal noise or the
number of objects used to judge average light source direc-
tion across the set size conditions.

As our analysis indicated that participants were using a
small number of objects to judge average light source di-
rection, we wanted to investigate which particular objects
participants may have been relying on when making their
judgements. To do this, we first computed the residuals as

the difference between the observed judgements of whether
the average illumination direction was rightwards and the
probability of rightwards judgements according to the fitted
model (Gelman, Goegebeur, Tuerlinckx, & Mechelen, 2000;
Gelman, Hill, & Vehtari, 2020). If a particular object in the
stimulus array was being used by participants as the basis
of their judgements, we reasoned that this would manifest
in a characteristic pattern to the residuals when examined as
a function of the illumination angle of that particular object
for trials in which the illumination angles across objects var-
ied (that is, when the external noise was greater than zero).
Specifically, the fitted model would under-predict the proba-
bility of a rightwards response when the illumination angle of
the particular object is rightwards (and hence show positive
residuals) and over-predict the probability of a rightwards re-
sponse when the illumination angle of the particular object is
leftwards (and hence show negative residuals). This pattern
arises because the average illumination angle across objects,
which is the basis for the fitted model, will not necessarily
have the same sign as the illumination angle for a particu-
lar object on a given trial. For example, say if a particular
object was being used by participants to make their lighting
direction judgements. There will be some trials on which the
object is lit from the left and the mean lighting across objects
is from the right; the model would over-predict the propen-
sity to respond ‘rightwards’ on those trials, due to its reliance
on the mean lighting angle rather than the angle for this par-
ticular object. Conversely, there will be some trials on which



10 PETERSON, KERSTEN, & MANNION

Figure 8. Example data and fitted psychometric function
from a single condition (set size of 9 objects) for a represen-
tative participant in Experiment 2. The green circles show the
mean proportion of rightwards judgements for trials where
the mean illumination angle was within a given bin, with the
size of the circles proportional to the number of trials in each
bin, separately for trials without (A) and with (B) external
noise. Note that the external noise levels for these trials were
mostly 80◦, 96◦, and 112◦. The solid lines and grey regions
show the median and 95% credible intervals of the psycho-
metric function derived from the fitted parameters for this
participant for this experimental condition.

the object is lit from the right and the mean lighting across
objects is from the left; the model would under-predict the
propensity to respond ‘rightwards’ on those trials. Hence, we
can use this profile of under-prediction and over-prediction to
identify the object(s) that are being utilised by participants in
making their lighting direction judgements.

We assigned each object in the array a number, as shown
in Figure 10A, and analysed the residuals as a function of
each object’s trial-specific illumination angles. Figure 10B
depicts the outcome of such an analysis for object #1, po-
sitioned in the centre of the object array, which shows an
agreement with the pattern of residuals that would be ex-
pected if that particular object was being used to make the
illumination direction judgements. To quantify this pattern,

we reversed the sign of the residuals where the object illumi-
nation angle was negative and then averaged over the object
illumination angles to give a summary of its adherence to the
expected pattern of residuals. As shown in Figure 10C, ob-
ject #1 was clearly the object that had the highest summary
score—suggesting that participants often relied on the cen-
tre object to estimate average light source direction. Florey,
Clifford, Dakin, and Mareschal (2016) reported a similar re-
sult: when asked to judge the average gaze direction of a set
of faces, observers tended to rely on the central items in the
stimulus when making their judgements. A possible explana-
tion for this reliance on the central items in the stimuli is that
observers seem to focus on the centre of a computer screen
when viewing stimuli (Tatler, 2007; Tseng, Carmi, Cameron,
Munoz, & Itti, 2009).

In Figure 10C, the grey band shows the 95% credible in-
terval of the summary obtained by calculating the residuals
using draws from the fitted model rather than the observed
responses—which provides an indicative range of summary
values that would be expected under the model. Comparing
the summaries from the objects against such a band reveals
two other sets of objects that have residuals that suggest that
participants may have been using such objects when mak-
ing their judgements. The first set consists of objects #4,
#5, and #6, which lie immediately below the centre object
in the object array. The second set, with a lower summary
score, consists of objects #2, #3, #7, #8, and #9, which lie
horizontally-adjacent to and above the central object, and ob-
jects #15 and #16, which lie in the lower outer ring of the ob-
ject array. This suggests that participants may also have used
objects surrounding the central object, particularly those po-
sitioned below the central object, when making their judge-
ments. We speculate that these lower objects may have been
utilised more frequently due to being inferred as being closer
in depth to the observer and therefore more relevant to the
egocentric illumination direction judgement.

A key component of this experiment was the presentation
of stimuli with high ‘external’ noise, imposed by drawing
the illumination angle of each object at random from a distri-
bution with a large standard deviation (see Figure 6). This
approach was a methodological necessity that allowed for
the number of integrated objects to be estimated separately
from the level of internal noise (see Figure 5). However, its
interpretation assumes that the strategy adopted by observers
is consistent across variation in external noise (Allard & Ca-
vanagh, 2012)—which may be particularly questionable here
given the ecologically-unusual scene that is produced with
high levels of external noise. Although we consider the in-
tegration of such a wide range of lighting directions to be an
unlikely requirement in everyday perception, we view this
task as a situation in which suitably-instructed observers can
voluntarily deploy an integration mechanism (if present) that
operates in natural vision (under conditions in which there
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Figure 9. Joint posterior distributions for the two set size conditions (9 and 25 visible objects) for the number of integrated
objects (A) and the amount of internal noise (B). In panel A, the labelled lines indicate the joint coordinates in which there is
either an equal number of integrated objects for the two set sizes or the number of integrated objects is consistent with an equal
exponent for the two set sizes (i.e., 9x and 25x); note that both the horizontal and vertical axes are shown with log spacing.

is less variation in lighting directions) within this artificial
situation.

The current experiment aimed to measure participants’ in-
ternal noise and the number of objects used to judge the av-
erage light source direction in a scene. We report that par-
ticipants used between 1 and 2 objects to judge average light
source direction, regardless of whether the scene contained 9
or 25 objects. Internal noise was also similar across set sizes.
Taken together with the results from Experiment 1, it seems
that the visual system relies on a small number of local sam-
ples when estimating the direction of lighting in a scene.

Experiment 3

In this experiment, we investigated whether differences
in implicit and explicit judgements of light source direction
could explain the lack of a set size effect reported in the
previous two experiments. As noted by Murray and Adams
(2019), implicitly estimating the properties of a light source
is important for perceiving surface reflectance and shape but
an explicit estimation may not be as important. Perhaps the
visual system does utilise multiple local estimates of lighting
direction when accounting for the effects of lighting direc-
tion on an object’s appearance but this was not evident in
the previous two experiments as participants were making an
explicit judgement, rather than an implicit one.

In the current experiment, participants completed a match-

to-sample task in which they were shown images of three
scenes (a sample, a match, and a foil) that contained 1, 9,
or 25 objects. Participants judged whether the shape of the
centre object in the sample scene (e.g., Figure 11B) was the
same as the shape of the centre object in the match (e.g.,
Figure 11A) or the foil scene (e.g., Figure 11C). The scenes
contained the same central object, however, the shape of the
central object in the foil scene was distorted such that it was
the odd one out. Participants’ accuracy (i.e., correctly se-
lecting the match scene) should decrease as the amount of
distortion applied to the foil object decreases and the foil ob-
ject appears to be more similar in shape to the sample object.
We also manipulated illumination incongruency such that the
sample scene could be illuminated from the same or different
direction as the match and foil scenes. If multiple objects are
relied upon when implicitly estimating light source direction,
precision at estimating light source direction should improve
with more objects in a scene. Such an improvement in preci-
sion would be evident in participants’ responses, with shape
identification based on shading cues improving with more
objects in the scene.

Methods

Participants. Thirty-eight participants (31 female and
7 male, median age of 19 years) with self-reported nor-
mal or corrected-to-normal vision completed the experiment.



12 PETERSON, KERSTEN, & MANNION

Figure 10. Analysis of the residuals as a function of the illu-
mination angles for individual objects in the stimulus array.
Panel A shows the assigned number for each object in the
stimulus array. Panel B shows the average value of the resid-
uals (vertical axis) for trials in which the illumination angle
for object #1 was within a particular range (horizontal axis).
The cross markers and dark grey ranges show the median
and 95% credible intervals, respectively, for such averages.
The light grey range shows the 95% credible interval for av-
erages calculated using residuals computed with draws from
the fitted posterior rather than from the observed responses.
Panel C shows the summary value of the residuals (vertical
axis) for each object (horizontal axis) as ribbon plots (see
Figure 3). The light grey range is as per panel B.

Figure 11. Examples of the stimuli from Experiment 3. The
stimuli were rendered scenes containing 1, 9, or 25 objects.
The white labels in panel A give the dimensions of the stim-
uli in degrees of visual angle. The stimuli shown here are
examples of scenes that would be presented on a trial for the
9-object condition and incongruent illumination condition.
Panel A is the match, panel B is the sample, and panel C
is the foil. The stimulus generation process is described in
the Stimuli section. The centre objects in each scene share
the same orientation, reflectance, and ‘potato’ instance. The
foil has a sinusoid distortion with an amplitude of approxi-
mately 0.117. The light source has an azimuth of −30◦ in A
and C and an azimuth of +30◦ in B.

The majority of participants (34/38) were 21-years-old or
younger. The recruitment procedures were as described for
Experiment 1.

Apparatus. The experimental setup and implementa-
tion were as described for Experiment 1, with the addition of
PyMesh (http://pymesh.readthedocs.io) which was
used for creating the stimuli.

Stimuli. The geometry of the objects shown to partici-
pants was based on the stimuli used in Norman, Todd, and

http://pymesh.readthedocs.io
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Orban (2004). First, we generated the mesh of a sphere (ap-
proximated by refining an icosahedron) and applied a verti-
cal sinusoidal distortion with a randomly selected frequency
from the range of 2 to 5 cycles per object and amplitude from
the range 0.04 to 0.08 to the sphere’s vertices (where the am-
plitude values are a proportion of the radius of the sphere).
The sphere was then rotated around the x-, y-, and z-axis and
the amount of rotation on each axis was randomly chosen
from the 0◦ to 360◦ range. This process of distorting and ro-
tating the sphere was repeated a further four times, resulting
in a potato-like object with bumpy surface curvature.

We created 100 instances of the potato object, randomly
varying the frequency and amplitude of the sinusoidal distor-
tions for each instance. Each potato’s vertices were then dis-
torted with an additional vertical sinusoid with a frequency
of 5 cycles per object and an amplitude ranging from 0.0
to 0.2 (amplitudes between 0.01 and 0.2 were logarithmi-
cally spaced, with 202 amplitudes in total). The potatoes
were not rotated following this additional sinusoidal distor-
tion. This resulted in a total of 20,200 potatoes; see Figure 12
for examples of a potato object distorted with a sinusoid with
different amplitudes. Each potato was then merged with the
mesh of a flattened sphere. The weight of the potato in the
merge varied from 1 in the centre of the flattened sphere to 0
towards the edges of the flattened sphere, with intermediate
weights following a Gaussian profile. The merge created
objects with varying internal surface curvature but with the
same bounding contour (see Figure 12 for examples).

We created scenes containing the merged objects using
POV-Ray. The scenes contained 1, 9, or 25 objects which
were placed on a flat checkerboard surface and tilted 50◦ in
depth away from the observer’s vantage point. A flat white
ring that surrounded the centre object was also placed on the
checkerboard surface. The reflectance and placement of the
objects in a scene were as described for Experiment 1. The
scenes were illuminated by a light source with an azimuth
of −30◦ or +30◦, and an elevation of 40◦. We rendered 100
instances of a scene for each combination of set size, light
source azimuth, potato instance, the orientation of the centre
object (whether the centre object was flipped upside down),
and the amplitude of the sinusoidal distortion applied to the
centre object. The position jitter of the objects was randomly
varied for each instance of a scene. For instances of scenes
containing 9 and 25 objects, the potato instance, reflectance,
and orientation were varied randomly for each of the non-
centre objects in a scene. Examples of the scenes are shown
in Figure 11.

Design and procedure. The experiment had a within-
subjects design with factors of set size (scenes with 1, 9, or
25 objects) and illumination incongruence (match and foil il-
luminated from the same or different direction to the sample).
Participants completed the experiment in a single 45-minute
session. Participants were introduced to the experiment via

a set of written instructions and a short practice task. The
practice task consisted of twelve “easy” trials (foil sinusoidal
distortion amplitude of ∼0.09 and ∼0.11 for all conditions)
in which we expected participants to respond correctly un-
less they misunderstood the task. Participants were required
to respond correctly on all of the practice trials before begin-
ning the experiment.

The experiment had 8 runs with 42 trials each, with a short
rest break between each run. On each trial, the match, sam-
ple, and foil were each presented for 800ms (600ms at full
visibility and 100ms ramp in and out from a black back-
ground) with a 800ms second gap between each interval.
The centre object in each of the three intervals had the same
potato instance, reflectance, and orientation, but the shape of
the centre object in the foil interval was distorted with the
sinusoidal amplitude for the trial. Depending on the illumi-
nation incongruence condition for the trial, the objects in the
sample scene were illuminated from the same (congruent) or
different (incongruent) direction to the objects in the match
and foil scenes. The sample was always presented in the
second interval; the order of presentation for the match and
foil was randomly chosen on each trial. The presentation of
the stimuli was followed by the response prompt: “Was the
shape of the centre object in the second image the same as
the shape of the centre object in the first or last image? Press
the ‘left’ arrow key for the first image or ‘right’ arrow key
for the last image”. Participants received feedback on their
response in the form of a tick or cross appearing briefly on
the screen before the next trial began.

The experiment had a total of 336 trials with 52 trials for
each condition. There were an additional 4 ‘catch’ trials for
each condition where the amplitude of the sinusoid distor-
tion applied to the foil object was 0.2. For each trial, the
amplitude of the sinusoid distortion was selected from the
range 0.01 to 0.2 using a Psi-marginal adaptive staircase pro-
cedure (Kontsevich & Tyler, 1999; Prins, 2013), with sepa-
rate staircases for each condition. Participant responses were
modelled using a Weibull function (Kingdom & Prins, 2010)
which describes the probability of a participant judging the
shape of the match object to be the same as the shape of
the sample object for a given sinusoidal distortion amplitude.
The Psi procedure targeted the threshold of the psychometric
function and marginalised over the slope of the function to
optimise the estimation of the threshold.

Data analysis. Nine participants were excluded from
the analysis as their catch trial accuracy was below 90%; the
analysis described here was conducted with the remaining 29
participants. We used a similar statistical approach to that
taken for Experiments 1 and 2, in which the threshold of the
psychometric function was expressed using a generalised lin-
ear mixed model (see Appendix C for a detailed description).
Figure 13 shows a summary of the observed data and the fit-
ted psychometric function for a single experimental condi-
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Figure 12. Examples of how varying the amplitude of the sinusoidal distortion affected the appearance of the stimuli in
Experiment 3. The rows show the front and top views of a potato object before and after it was merged with a flattened
sphere. Each column shows the potato object distorted with a sinusoid with an amplitude of 0.0, 0.025, 0.5, 0.1, and 0.2. The
frequency of the sinusoid is 5.0 cycles per object.

tion from a representative participant.

Results

In this experiment, participants completed a match-to-
sample task in which they were shown three scenes and asked
to compare the shape of the centre object in each of the
scenes. We used a Bayesian model to estimate the identi-
fication threshold for each experimental condition, with the
threshold defined as the amplitude of the foil sinusoidal dis-
tortion which corresponded to around 82% performance in
correctly identifying the matching scene. Note that the am-
plitude values are a proportion of the radius of the originat-
ing sphere in the object creation process (see the Stimuli sec-
tion for details). We compared the aggregated observed data
and the posterior retrodictive samples to check how well our
model approximated the data, finding that the model repro-
duced the patterns in the observed data with no major dis-
crepancies (see Figure C1 in Appendix C).

Figure 14 summarises the estimated posterior distribu-
tions for the threshold parameter for each of the six exper-
imental conditions (whether the illumination was congruent
or incongruent between the sample and the match/foil for
scenes with 1, 9, or 25 objects). If the presence of multiple
objects increased the capacity for an observer to discount the
effects of illumination and recover the intrinsic shape of the
target object, we would expected that the threshold would de-
crease with increasing numbers of visible objects. However,
Figure 14 shows that there was very little change in thresh-
olds with increasing numbers of visible objects. The param-
eter capturing the linear component of the trend indicated
that the threshold changed by between a factor of about 0.94
and 1.06 (95% credible interval; median: 1.00) with each in-
crement in set size condition (i.e., from 1 to 9 and from 9 to
25 visible objects), averaged over illumination congruence
conditions.

Figure 14 also shows that presenting a sample scene with



ESTIMATING THE DIRECTION OF LIGHTING IN SCENE 15

Figure 13. Example data and fitted psychometric function
from a single condition (set size of 9 objects with congru-
ent illumination) for a representative participant in Experi-
ment 3. The green circles show the mean proportion of cor-
rect judgements for trials where the amplitude of the sinu-
soidal distortion applied to the foil object was within a given
bin, with the size of the circles proportional to the number
of trials in each bin. The solid lines and surrounding re-
gions show the median and 95% credible intervals of the
psychometric function derived from the fitted parameters for
this participant for this experimental condition based only on
task-related considerations (darker blue) and also when in-
cluding lapsing (lighter yellow). The former is depicted be-
cause the key parameter of interest, the threshold, is defined
as part of the task-based psychometric function. Note that the
psychometric functions have wide credible intervals because
the data collection procedure sacrificed precision of the slope
to optimise estimation of the threshold.

a different illumination direction to the match and foil scenes
worsened identification performance. Across the set size
conditions, thresholds in the incongruent illumination condi-
tions increased by a factor of about 1.85 (posterior median;
95% credible interval: [1.70,2.00]) relative to thresholds in
the congruent illumination conditions.

Discussion

The current experiment aimed to measure shape identifi-
cation thresholds for scenes with 1, 9, and 25 objects, indi-
rectly examining whether multiple objects are relied upon to
estimate light source direction. We report that shape identifi-
cation thresholds were similar across the set size conditions.
Furthermore, our results suggest that the lack of a set size ef-
fect reported in Experiments 1 and 2 was not a consequence
of participants making an explicit, rather than an implicit,
judgement of light source direction.

The similarity in shape identification thresholds across the

Figure 14. Effect of set size rank and illumination incon-
gruence on identification thresholds. The horizontal axis is
the number of objects present in a scene. The vertical axes
show the threshold of the psychometric function in log (left
axis) and linear (right axis) units. The display of the credible
intervals is as per Figure 3.

set sizes is consistent with Ho, Landy, and Maloney (2006),
who reported that roughness constancy did not improve with
more objects in a scene. In Ho et al. (2006), observers com-
pared the roughness of two surfaces, with each of the sur-
faces embedded within its own scene. Consistent with the
results reported here, adding cues to the spatial distribution
of light in the scene (3D objects that varied in shape, colour,
specularity, and position) did not improve discrimination per-
formance. Ho et al. (2006) argued that the failure of these ad-
ditional cues to improve roughness constancy was due to the
observers’ reliance on cues that were not invariant to changes
in illumination direction. Our results offer an alternative ex-
planation: the additional cues did not lead to any improve-
ment in roughness constancy because observers were poten-
tially relying on only one object in the scene to estimate light
source direction. Furthermore, the agreement between the
results of the current experiment and those from Ho et al.
(2006) suggests that the homogeneity of the objects in our
scenes was not responsible for the lack of integration.

In addition to the set size manipulation, we also varied the
congruence of the light source direction on each trial. We
found that presenting scenes with incongruent illumination
directions led to an increase in shape identification thresh-
olds. This illumination incongruence effect is consistent with
previous research which has reported that perception of sur-
face shape is not constant across variations in light source di-
rection (Caniard & Fleming, 2007; Christou & Koenderink,
1997; Khang, Koenderink, & Kappers, 2007; Tarr, Kersten,
& Bülthoff, 1998).

In the present experiment, we continued to investigate
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whether the visual system uses multiple local estimates to
judge light source direction. Using a match-to-sample task,
we aimed to measure shape identification thresholds for
scenes that contained 1, 9, and 25 objects. We reported
that identification thresholds were similar across the set size
conditions which suggests that participants were not utilis-
ing multiple objects to judge the direction of the light source
illuminating a scene. This consistent with the results from
the previous two experiments, indicating that the lack of a
set size effect in those experiments was not a consequence of
participants making an explicit (rather than implicit) judge-
ment of light source direction.

General discussion

The results of the three experiments presented here point
towards the visual system relying on a limited number of ob-
jects in a scene to estimate the direction of lighting. In Ex-
periment 1, we report that there was, if anything, a small
decrease in participants’ sensitivity at discriminating light
source direction as the number of objects in a scene in-
creased. The results from Experiment 2 indicated that the
number of objects used to judge average light source direc-
tion was similar for scenes that contained 9 and 25 objects.
The apparent lack of an improvement in performance with
set size in Experiments 1 and 2 does not seem to be due to
any potential differences in implicit and explicit judgements
of light source direction, based on the results of Experiment
3.

Our results contradict the suggestion that lighting direc-
tion may be represented as an ensemble or summary statis-
tic (Haberman & Whitney, 2012; Pont, 2019; Sanders et al.,
2008; Whitney & Yamanashi Leib, 2018). A trend that has
emerged in ensemble perception is that observers tend to in-
tegrate the square root of the total number of items in a stim-
ulus when generating a summary statistic (Whitney & Ya-
manashi Leib, 2018). If lighting direction was represented
in a similar manner to other ensembles, we would have ex-
pected to see a similar trend in the present study. Instead, we
find that estimates of lighting direction are informed by 1 or 2
objects within a scene. As such, while there is some evidence
of observers relying on multiple objects to estimate lighting
direction, it seems that any spatial integration occurring is
minimal and not consistent with ensemble representations of
other visual stimuli.

The reliance on a small number of objects to estimate
light source direction provides a potential explanation for
the visual system’s apparent insensitivity to illumination in-
consistencies in a scene. Ostrovsky, Cavanagh, and Sinha
(2005) reported that observers struggle to locate an oddly
illuminated target object in real and rendered scenes. Sub-
sequent studies examining the visual system’s insensitiv-
ity to illumination inconsistencies within a scene reported
similar results (Farid & Bravo, 2010; Ferwerda, Selan, &

Pellacini, 2010; Lopez-Moreno, Sundstedt, Sangorrin, &
Gutierrez, 2010; Nightingale, Wade, Farid, & Watson, 2019;
Tan, Lalonde, Sharan, Rushmeier, & O’Sullivan, 2015). An
oddly illuminated object in a scene would likely be missed if
the consistency of local estimates of light source properties
is not verified by the visual system (Ostrovsky et al., 2005).
Such a lack of verification is consistent with Koenderink et
al. (2007) who noted that when observers were adjusting the
appearance of a probe object to “fit” into a scene, the light-
ing conditions which did not immediately surround the probe
seemed to be ignored. The results from Experiment 2 indi-
cate that 1 or 2 objects are relied upon to estimate lighting
direction in a scene; this can be interpreted as 1 object be-
ing relied on for some scenes, while 2 objects informed es-
timates for other scenes. The former case supports Ostro-
vsky et al.’s (2005) claim that a lack of verification of local
estimates of lighting direction explains observers’ insensitiv-
ity to illumination inconsistencies in a scene. In the latter
case, it is reasonable that an oddly illuminated object may
still be missed if only two objects are integrated, particularly
if estimates are spatially restricted (as suggested by the item
analysis for Experiment 2).

It could be argued that the lack of an effect of set size on
light source direction discrimination was related to our stim-
uli. The stimuli presented to participants in our experiments
were images of simple scenes rendered without mutual illu-
mination: we chose to keep the scenes simple as this was (to
our knowledge) the first set of experiments to directly mea-
sure the number of objects used to estimate the direction of
lighting in a scene. Perhaps the absence of mutual illumina-
tion, as well as the general simplicity of our scenes, could
have made our scenes seem unrealistic and affected our re-
sults in some way. However, both Gilchrist (2018) and Mo-
toyoshi and Matoba (2012) presented observers with realistic
scenes yet found no evidence of the perceived reflectance of
a target surface being influenced by the lighting conditions
in the surrounding context. This is consistent with the results
reported here; we would not expect the lightness of the target
to be influenced by the surrounding context if there is very
minimal (or no) spatial integration occurring when observers
are estimating the lighting conditions in a scene. Even so,
it is important to note that the generalisability of the results
presented here is somewhat limited due to the simplicity of
the scenes used in the three experiments. A potential direc-
tion for future research is to examine the how estimation of
the lighting conditions in a scene may depend on the type of
scenes presented to participants.

Additionally, the positioning of objects in our scenes may
have affected the capacity for spatial integration. The vari-
ation in set size was achieved by surrounding the central
objects with additional objects, and the number of objects
within a scene was unpredictable across trials. This may
have motivated observers to limit their spatial attention to
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the regions most likely to contain an object; an integration
strategy that relies on local attention can reduce the accu-
racy with which summary statistics are computed (Chong &
Treisman, 2005). Such a strategy may be consistent with the
apparent over-reliance on the central object reported here for
Experiment 2 (see Figure 10). Alternatively, it could also
be argued that the potential presence of peripheral objects
could instead encourage observers towards a global atten-
tional strategy. Given this potential influence of attention
on spatial integration, further experimentation is necessary to
determine the role of attention in estimating scene lighting.

There is a possibility that the lack of a set size effect was
due to the short stimulus presentation time. We selected the
presentation time based on practical limitations (e.g., time
constraints) as well as ancedotal feedback from pilot par-
ticipants, which suggested that there was sufficient time to
view the scene on each trial. However, a potential explana-
tion for the lack of a set size effect is that the short presen-
tation time prevented participants from integrating as there
actually was not enough time to analyse the whole scene. Ho
et al. (2006) made a similar argument when discussing why
the addition of multiple lighting cues to a scene did not im-
prove roughness constancy, though further experimentation
revealed that the initial result remained with a longer stim-
ulus duration. Furthermore, evidence of spatial integration
has been reported for a range of visual stimuli with simi-
lar presentation times (Whitney & Yamanashi Leib, 2018).
As such, we consider the stimulus presentation time to be
a possible but unlikely explanation for the minimal spatial
integration reported here.

The overall aim of the experiments presented here was to
investigate the extent to which estimates of direction of light-
ing in a scene are affected by the number of visible objects in
the scene. The key conclusion of this study is that estimates
of lighting direction are spatially restricted, with observers
utilising a small number of objects in a scene to make their
estimates. The current study casts doubt on the claim that
lighting direction is represented as an ensemble or summary
statistic; the results suggest that any integration is minimal
and inconsistent with summary statistical representations of
other visual stimuli.
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Appendix A
Experiment 1

Statistical model

We assume that participant responses on the main task
trials (y), whether the scene was judged as being illuminated
from the right (1) or left (0), can be considered as draws from
a Bernoulli distribution:

yi jkr ∼ Bernoulli
(

pi jkr
)

(2)

where i indicates participants, j indicates cast shadow condi-
tions, k indicates set size conditions, and r indicates repeats.
We assume that the probability of a rightwards response (p)
reflects a mixture of two processes: a process based on the
trial stimulus and task and a process that is independent of
the trial stimulus and task. We refer to the latter process as
a ‘lapse’, and we assume that each participant has a propen-
sity to lapse that we refer to as their lapse rate (λ ). The
probability of a rightwards response is given by a weighted
combination of these two processes:

pi jkr = (1−λi) pt
i jkr +λi pc. (3)

Here, pt is the probability of a rightwards response based on
task-based factors and pc is the probability of a rightwards re-
sponse under a lapse. We assume that participants are equally
likely to respond with either response option during a lapse
and hence fix pc to 0.5.

The lapse rate for each participant was informed by
their responses to the catch trials, as any incorrect response
on a catch trial was considered to be indicative of a lapse.
We thus modelled the number of incorrect responses on the
catch trials (yc) as:

yc
i ∼ Binomial(60,λi pc) (4)

where i indexes the participant, 60 is the number of catch
trials per participant, λ is the lapse rate, and pc is the proba-
bility of an incorrect response under a lapse (assumed to be
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0.5). We modelled the lapse rates using a generalised linear
model with a logit link function:

logit λi = β
λ
0 +ζ

λ
0;i (5)

where β λ
0 is the average lapse rate across participants and ζ λ

0
is a random effect that allows the lapse rates to vary across
participants (both on the logit scale).

We modelled the probability of a rightwards response
based on task-relevant factors (pt ) via a cumulative Normal
psychometric function (Φ):

pi jkr = Φ
(
θi jkr,µi jk,σi jk

)
. (6)

Here, θ is the illumination angle in the stimulus of a given
trial, µ is the midpoint of the function, and σ is what we re-
fer to as the ‘spread’ of the function (with lower values relat-
ing to steeper slopes and higher values relating to shallower
slopes).

We are primarily interested in the spread parame-
ter (σ ), which we modelled via a generalised linear model
with a log link function:

logσi jk =
(
β

σ
0 +ζ

σ
0;i
)

x0 +(
β

σ
1 +ζ

σ
1;i
)

x1; j +(
β

σ
2 +ζ

σ
2;i
)

x2;k +(
β

σ
3 +ζ

σ
3;i
)

x3;k +(
β

σ
4 +ζ

σ
4;i
)

x4; jk +(
β

σ
5 +ζ

σ
5;i
)

x5; jk.

(7)

Here, the x terms represent the predictors for the inter-
cept (x0 = 1), the main effect of cast shadows (x1), the lin-
ear (x2) and quadratic (x3) effects of set size rank, and the
interaction between cast shadows and the linear (x4) and
quadratic (x5) effects of set size rank (see Table A1 for the
specific predictor values). The β σ coefficients represent the
fixed effect of each predictor and the ζ σ coefficients are ran-
dom effects that permits variation across participants. Note
that we specified σ in logarithmic units to prevent any nega-
tive spreads as we expected the probability of judging a scene
as illuminated from the right to increase as the angle of the
light source transitioned from negative to positive values. A
consequence of specifying σ in logarithmic units is that the
additive effects in Equation 7 are multiplicative on a linear
scale.

The midpoint of the psychometric function (µ) repre-
sents the illumination angle at which an observer is equally
likely to judge the scene as illuminated from the left or right.
For an unbiased observer, the midpoint would be 0◦. To al-
low for bias in observers’ responses, the midpoint was mod-
elled analogously to the spread parameter (σ ), except for the
use of a linear rather than log link function.

Statistical approach

We used a Bayesian framework (Lee, 2018; van de
Schoot et al., 2021; Wagenmakers et al., 2018) to determine
the posterior probability distribution of the statistical model
parameters given our observed data (judgements of illumina-
tion direction on catch and non-catch trials). Reporting sum-
maries of the posterior distributions is our primary method
of communicating the outcomes of the study (Kruschke &
Liddell, 2018), as our primary goal is to estimate the val-
ues of the parameters rather than to perform formal hypoth-
esis testing or model comparison (Calin-Jageman & Cum-
ming, 2019). We use the median as the measure of centrality
and credible intervals (equal-tailed intervals, calculated us-
ing quantiles; Makowski, Ben-Shachar, & Lüdecke, 2019) as
the measure of uncertainty when summarising the posterior
distributions.

The Bayesian framework requires the specification of
prior distributions for the model parameters. We adopted the
strategy of providing weakly informative priors, where the
informative aspect is typically on the approximate scale of
the parameter values. The prior for the spread intercept (β σ

0 )
was a Normal distribution with a mean of log(10) and stan-
dard deviation of log(2)/2, as we expected discrimination
sensitivity to be such that the spread of participants’ psycho-
metric functions were around 10◦ across all conditions. The
prior for the main effect of cast shadows (β σ

1 ) on the spread
was a skewed-Normal distribution with a location of 0, scale
of log(4)/2, and skew of 4, as we expected that rendering
scenes without cast shadows would lead to increased psycho-
metric function spreads compared to scenes rendered with
cast shadows. We were particularly interested in β σ

2 and β σ
3

as these parameters represented the linear and quadratic ef-
fects of the set size manipulation on the spread of the psycho-
metric function. The priors for β σ

2 and β σ
3 were each a Nor-

mal distribution centered around zero with a standard devia-
tion of log(2)/2. The priors for the interaction effects (β σ

4
and β σ

5 ) on the spread were each a Normal distribution cen-
tered around zero with a standard deviation of log(1.25)/2.
The priors for each of the parameters for the midpoint β µ

were given by a Normal distribution with a mean of 0 and
a standard deviation of 1, with the exception of the mid-
point intercept parameter (β µ

0 ) which had a standard devi-
ation of 2.5. The prior for the average lapse rate parame-
ter (β λ

0 ), on a logit scale, was given by a Normal distribution
with a mean of logit(0.05) and a standard deviation of 0.2.

The participant random effects (ζ ) were assumed to
be drawn from a zero-centred multivariate Normal distribu-
tion with 13 dimensions (ζ λ

0 , ζ σ
0 , . . . ,ζ σ

5 , ζ
µ

0 , . . . ,ζ
µ

5 ), which
allows for correlations among the participant random ef-
fects. The participant random effects covariance matrix was
constructed via a set of half-Normal distributions for the
standard deviations and an LKJ distribution (Lewandowski,
Kurowicka, & Joe, 2009) for the correlations. The standard
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Table A1
Predictor values included in the model for the spread (Equation 7) and the midpoint of the psychometric function.

No shadows
Set size: 1

No shadows
Set size: 9

No shadows
Set size: 25

Shadows
Set size: 1

Shadows
Set size: 9

Shadows
Set size: 25

x1 +0.5 +0.5 +0.5 -0.5 -0.5 -0.5

x2 -0.5 0.0 +0.5 -0.5 0.0 +0.5

x3 +0.5 -1.0 +0.5 +0.5 -1.0 +0.5

x4 -0.25 0.0 +0.25 +0.25 0.0 -0.25

x5 +0.25 -0.5 +0.25 -0.25 +0.5 -0.25

deviation for the half-Normal priors was 0.5 for the lapse
rate random effect, log(2)/2 for each of the spread parame-
ter random effects, and 1 for each of the midpoint parameter
random effects except the intercept (2.5). The shape parame-
ter of the LKJ distribution (η) was given a value of 2, which
applies a weak prior against strong absolute correlations.

The model was implemented in PyMC (ver-
sion 4.2.2; Salvatier et al., 2016), and Markov chain Monte-
Carlo (MCMC) sampling was performed using its implemen-
tation of a No-U-turn sampler (Hoffman & Gelman, 2014).
A total of 4,000 draws were used for each of 4 independent
chains in the sampling process, after discarding the initial
draws (1,000) used in initializing the sampler.

Model evaluation

To check how well our statistical model approximated
the data, we visually compared the aggregated observed data
and the posterior retrodictive samples. The posterior retro-
dictive samples are generated by drawing samples from the
model parameters’ posterior distributions and these samples
are then used to generate the simulated data sets. These are
also known as posterior predictive samples, however we use
the term retrodictive as the same observed data is used to fit
the model (Betancourt, 2020). As can be seen in Figure A1,
the statistical model reproduced the patterns in the observed
data with no major discrepancies.

Appendix B
Experiment 2

Statistical model

We used a similar statistical modelling strategy to that
taken for Experiment 1 in the analysis of Experiment 2. We
again assume that participant responses on the main task tri-
als (y), whether the average illumination in the scene was
judged as being from the right (1) or left (0), can be consid-
ered as draws from a Bernoulli distribution:

yi jr ∼ Bernoulli(pi jr) (8)

where i indicates participants, j indicates set size conditions,
and r indicates repeats. We also assume that such responses
reflect a mixture of on-task and off-task (lapse) components:

pi jr = (1−λi) pt
i jr +λi pc. (9)

Here, pt is the probability of a rightwards response based on
task-based factors and pc is the probability of a rightwards
response under a lapse (fixed at 0.5). We modelled the num-
ber of incorrect responses on the catch trials (yc) as per Ex-
periment 1.

We modelled the probability of a rightwards response
based on task-relevant factors (pt ) via a ‘wrapped’ cumula-
tive Normal psychometric function (Φ◦):

pi jr = Φ◦ (θi jr,µi j,σi j) . (10)

Here, θ is the mean of the distribution used to draw the illu-
mination angles for the objects in the stimulus of a given trial,
µ is the midpoint of the function, and σ is the standard devia-
tion (spread) of the function. We use the procedure described
by Dakin et al. (2005a, see their Appendix B) to implement
the cumulative distribution function for a wrapped Normal
distribution.

We modelled the spread parameter (σ ) via an equiva-
lent noise framework:

σi jr =

√√√√σ2
int[i j]+σ2

ext[i jr]

N
bi j
j

. (11)

Here, σext and N are known values and indicate the amount
of external noise on a given trial (σext) and the number of
visible objects on a given trial (N), respectively.

We are primarily interested in the number of effec-
tive samples used in making the illumination direction judge-
ments, which corresponds to the denominator in the above
equation. To assist in appropriately constraining the permis-
sible number of effective samples for a given set size (to be-
tween 1 and N), we modelled the exponent of the set size (b);
in this approach, b can vary between 0 (corresponding to 1 ef-
fective sample) and 1 (corresponding to N effective samples),
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Figure A1. Summary of the observed data and the posterior retrodictive samples for each condition. Each panel corresponds
to a particular cast shadow and set size condition. The horizontal axis represents the mean of the illumination angles in a bin,
with 20 non-linear spaced bins in total. The angles in each bin were chosen so that the summary in each bin was formed from
an approximately equal number of trials. The vertical axis is the proportion of trials where scenes were judged as illuminated
from the right. The green circles represent the observed data. In each panel, the column of grey dashes at a given bin represents
the number of trials with an illumination angle from that bin. The shade of grey of the dashes is inversely related to the number
of posterior retrodictive samples at the associated response proportion, with darker shades corresponding to more samples and
lighter shades corresponding to fewer samples.

independent of set size. Because b is thus constrained to the
unit interval, we used a logit link function when modelling b
via a generalised linear mixed model:

logit bi j =
(

β
b
0 +ζ

b
0[i]

)
+
(

β
b
1 +ζ

b
1[i]

)
x j. (12)

Here, x represents the predictor for the difference in the ex-
ponent between the set size conditions; x has a value of −0.5
for trials with a set size of 9 and a value of +0.5 for trials
with a set size of 25. The β b coefficients represent the aver-
age exponent across set sizes (β b

0 ) and the difference in ex-
ponent between set sizes (β b

1 ), both on a logit scale. The ζ b

coefficients are random effects that permits variation across
participants.

The amount of internal noise (σint) was modelled us-
ing a similar generalised linear mixed model to that of the
exponent (b), with the exception of the use of a log rather
than a logit link function. The midpoint of the psychometric
function (µ) was also modelled analogously, using a linear
link function.

Statistical approach

We used a similar statistical approach to that taken for
Experiment 1 in the analysis of Experiment 2. We applied a
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prior of a Student’s t-distribution with a mean of 0, a stan-
dard deviation of 1.5, and a degrees of freedom of 6 to the
average exponent across set sizes parameter (β b

0 ). This use
of the degrees of freedom parameter allowed for an increase
in the density at the tails of the distribution, which provided
a roughly uniform distribution of exponents on the inverse
logit (unit interval) scale. The prior on the average amount of
internal noise (β σint

0 ) was given by a Normal distribution with
a mean of log(10) and a standard deviation of log(2)/2. The
specification of the priors for the fixed effects for the lapse
rate (λ ) and the midpoint of the psychometric function (µ)
were as per Experiment 1.

The participant random effects (ζ ) were assumed to
be drawn from a zero-centred multivariate Normal distribu-
tion with 7 dimensions (ζ λ

0 , ζ
σint
0 , ζ

σint
1 , ζ b

0 , ζ b
1 , ζ

µ

0 , ζ
µ

1 ), con-
structed as per Experiment 1. The standard deviation for the
half-Normal priors was 0.5 for each of the exponent (ζ b) ran-
dom effects and log(2)/2 for each of the internal noise (ζ σ

int)
random effects; the priors for the lapse rate (ζ λ ) and mid-
point (ζ µ ) random effects were as per Experiment 1. The
shape parameter of the LKJ distribution (η) was again given
a value of 2.

Model evaluation

As with Experiment 1, we visually compared the ag-
gregated observed data and the posterior retrodictive sam-
ples to check how well our statistical model approximated
the data. The statistical model reproduced the patterns in the
observed data with no major discrepancies, as can be seen in
Figures B1 and B2.

Appendix C
Experiment 3

Statistical model

We used a similar statistical modelling strategy to that
taken for Experiments 1 and 2 in the analysis of Experiment
3. We again assume that participant responses on the main
task trials (y), here whether the shape of the match object was
correctly (1) or incorrectly (0) judged as being the same as
the shape of the sample object, can be considered as draws
from a Bernoulli distribution:

yi jkr ∼ Bernoulli
(

pi jkr
)

(13)

where i indicates participants, j indicates set size conditions,
k indicates illumination incongruence conditions, and r indi-
cates repeats. We also assume that such responses reflect a
mixture of on-task and off-task (lapse) components:

pi jkr = (1−λi) pt
i jkr +λi pc. (14)

Here, pt is the probability of a correct response based on
task-based factors and pc is the probability of a correct re-
sponse under a lapse (fixed at 0.5). We modelled the number

of incorrect responses on the catch trials (yc) as per Experi-
ments 1 and 2, except that the number of catch trials was 24
per participant in this experiment.

We modelled the probability of a correct response
based on task-relevant factors (pt ) via a Weibull cumulative
distribution function (Ψ) that is shifted and scaled such that
the probability of a correct response asymptotes at 0.5 as the
foil sinusoid amplitude (∆) approaches zero:

pt
i jkr = 0.5+0.5×Ψ

(
∆i jkr,νi jk,κi

)
. (15)

The Weibull cumulative distribution function (Ψ) is defined
as:

Ψ(∆,ν ,κ) = 1− e−(∆/ν)κ

, (16)

where ν is the threshold and κ is the slope of the function.
We are primarily interested in the threshold parame-

ter (ν), which we modelled using a similar approach to the
psychometric function parameters in Experiment 1:

logνi jk =
(
β

ν
0 +ζ

ν
0;i
)

x0 +(
β

ν
1 +ζ

ν
1;i
)

x1; j +(
β

ν
2 +ζ

ν
2;i
)

x2;k +(
β

ν
3 +ζ

ν
3;i
)

x3;k +(
β

ν
4 +ζ

ν
4;i
)

x4; jk +(
β

ν
5 +ζ

ν
5;i
)

x5; jk.

(17)

Here, the x terms represent the predictors for the inter-
cept (x0 = 1), the main effect of illumination incongru-
ence (x1), the linear (x2) and quadratic (x3) effects of set
size rank, and the interaction between illumination incongru-
ence and the linear (x4) and quadratic (x5) effects of set size
rank (see Table C1 for the specific predictor values). The
β ν coefficients represent the fixed effect of each predictor
and the ζ ν coefficients are random effects that permits vari-
ation across participants. Note that because we specified ν

in logarithmic units to prevent negative threshold values, the
additive effects in Equation 17 are multiplicative on a linear
scale.

We modelled the slope of the psychometric func-
tion (κ) for each participant non-hierarchically and without
any main or interaction effects, as our data were not particu-
larly informative of the slope because of its marginalisation
in the adaptive staircase procedure. The slope was modelled
as:

logκi ∼ N (log10, log(2)/2) (18)

where i indexes the participant. The slope was specified in
logarithmic units to restrict estimates to positive-only val-
ues as we expected the proportion of correct responses to
increase as the amplitude of the foil sinusoidal distortion in-
creased.
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Figure B1. Summary of the observed data and the posterior retrodictive samples for the 9-object condition. Each panel
corresponds to a particular external noise level. The horizontal axis is the mean illumination angle. Each horizontal axis tick
in the σext = 0◦ panel represents the mean of a group of mean illumination angles that were chosen so that the summary at each
tick was formed from an approximately equal number of trials. Note that the horizontal axis ticks are non-linearly spaced.
The vertical axis is the proportion of trials where the mean illumination direction was judged as rightwards. The green circles
represent the observed data. The columns of grey dashes in each panel represent the number of trials at a particular mean
illumination angle. The shade of grey of the dashes is inversely related to the number of posterior retrodictive samples at the
associated response proportion, with darker shades corresponding to more samples and light shades corresponding to fewer
samples.

Statistical approach

We used a similar statistical approach to that taken
for Experiments 1 and 2 in the analysis of this experiment.
The prior for the threshold intercept (β ν

0 ) was a Normal dis-
tribution was a mean of log(0.075) and standard deviation
of log(2)/2 as we expected the threshold to be around 0.075
across all conditions, with thresholds less than 0.0375 and
greater than 0.15 considered unlikely. The prior for the
main effect of illumination incongruence (β ν

1 ) was a skewed-
Normal distribution with a location of 0.1, scale of log(2)/2,
and skew of 3.0, reflecting our belief that varying the di-
rection of illumination between the sample and the match is
more likely to worsen than improve performance. The priors
for the linear (β ν

2 ) and quadratic (β ν
3 ) main effects of set size

were each a Normal distribution centered around zero with a
standard deviation of log(1.5)/2. The priors for the interac-

tion effects (β ν
4 and β ν

5 ) were each a Normal distribution cen-
tered around zero with a standard deviation of log(1.25)/2.
The priors for the participant random effects on the threshold
were each a half-Normal distribution with a standard devia-
tion of log(1.5)/2. The priors for the lapse rate (ζ λ ) random
effect was as per Experiments 1 and 2. The shape parameter
of the LKJ distribution (η) was again given a value of 2.

Model evaluation

Consistent with the two previous experiments, we
compared the aggregated observed data and the posterior
retrodictive samples to check how well our statistical model
approximated the data. The statistical model reproduced the
patterns in the observed data with no major discrepancies, as
can be seen in Figure C1.
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Figure B2. Summary of the observed data and the posterior retrodictive samples for the 25-object condition. See the caption
of Figure B1 for a description of the figure.

Table C1
Coefficients included in the model for the psychometric function threshold (Equation 17).

Incongruent illumination Congruent illumination

Set size: 1 Set size: 9 Set size: 25 Set size: 1 Set size: 9 Set size: 25

x1 +0.5 +0.5 +0.5 -0.5 -0.5 -0.5
x2 -0.5 0.0 +0.5 -0.5 0.0 +0.5
x3 +0.5 -1.0 +0.5 +0.5 -1.0 +0.5
x4 -0.25 0.0 +0.25 +0.25 0.0 -0.25
x5 +0.25 -0.5 +0.25 -0.25 +0.5 -0.25
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Figure C1. Summary of the observed data and the posterior retrodictive samples. Each panel corresponds to a particular set size
and illumination incongruence condition. The horizontal axis represents the geometric mean of the foil sinusoid amplitudes
in a bin, with 20 non-linear spaced bins in total. The amplitudes in each bin were chosen so that the summary in each bin was
formed from an approximately equal number of trials. The vertical axis is the proportion of trials where participants responded
correctly. The green circles represent the observed data. In each panel, the column of grey dashes at a given bin represents the
number of trials with a foil sinusoid amplitude from that bin. The shade of grey of the dashes is inversely related to the number
of posterior retrodictive samples at the associated response proportion, with darker shades corresponding to more samples and
lighter shades corresponding to fewer samples. Note that the psychometric functions for each condition appear to be shallow
as the Psi procedure marginalised over the slope of the function to optimise the estimation of the threshold.
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